400 research outputs found

    Negative-resistance models for parametrically flux-pumped superconducting quantum interference devices

    Full text link
    A Superconducting QUantum Interference Device (SQUID) modulated by a fast oscillating magnetic flux can be used as a parametric amplifier, providing gain with very little added noise. Here, we develop linearized models to describe the parametrically flux-pumped SQUID in terms of an impedance. An unpumped SQUID acts as an inductance, the Josephson inductance, whereas a flux-pumped SQUID develops an additional, parallel element which we have coined the ``pumpistor.'' Parametric gain can be understood as a result of a negative resistance of the pumpistor. In the degenerate case, the gain is sensitive to the relative phase between the pump and signal. In the nondegenerate case, gain is independent of this phase. We develop our models first for degenerate parametric pumping in the three-wave and four-wave cases, where the pump frequency is either twice or equal to the signal frequency, respectively. We then derive expressions for the nondegenerate case where the pump frequency is not a multiple of the signal frequency, where it becomes necessary to consider idler tones which develop. For the nondegenerate three-wave case, we present an intuitive picture for a parametric amplifier containing a flux-pumped SQUID where current at the signal frequency depends upon the load impedance at an idler frequency. This understanding provides insight and readily testable predictions of circuits containing flux-pumped SQUIDs.Comment: 27 pages, 6 figures, 1 tabl

    Bias and temperature dependence of the noise in a single electron transistor

    Full text link
    A single electron transistor based on Al-AlO_x-Nb tunnel junctions was fabricated by shadow evaporation and in situ barrier formation. Its output current noise was measured, using a transimpedance amplifier setup, as a function of bias voltage, gain, and temperature, in the frequency range 1...300 Hz. The spot noise at 10 Hz is dominated by a gain dependent component, indicating that the main noise contribution comes from fluctuations at the input of the transistor. Deviations from ideal input charge noise behaviour are found in the form of a bias dependence of the differential charge equivalent noise, i. e. the derivative of current noise with respect to gain. The temperature dependence of this effect could indicate that heating is activating the noise sources, and that they are located inside or in the near vicinity of the junctions.Comment: 16 pages, 9 figures (EPS

    Fast readout of a single Cooper-pair box using its quantum capacitance

    Get PDF
    We have fabricated a single Cooper-pair box (SCB) together with an on-chip lumped element resonator. By utilizing the quantum capacitance of the SCB, its state can be read out by detecting the phase of a radio-frequency (rf) signal reflected off the resonator. The resonator was optimized for fast readout. By studying quasiparticle tunneling events in the SCB, we have characterized the performance of the readout and found that we can perform a single shot parity measurement in approximately 50 ns. This is an order of magnitude faster than previously reported measurements.Comment: 7 pages, 5 figure

    Kinetics of non-equilibrium quasiparticle tunneling in superconducting charge qubits

    Full text link
    We directly observe low-temperature non-equilibrium quasiparticle tunneling in a pair of charge qubits based on the single Cooper-pair box. We measure even- and odd-state dwell time distributions as a function of temperature, and interpret these results using a kinetic theory. While the even-state lifetime is exponentially distributed, the odd-state distribution is more heavily weighted to short times, implying that odd-to-even tunnel events are not described by a homogenous Poisson process. The mean odd-state dwell time increases sharply at low temperature, which is consistent with quasiparticles tunneling out of the island before reaching thermal equilibrium.Comment: Replaced Figure 1 with color version, corrected more typos. Version submitted to PR

    Measurement of the shot noise in a single electron transistor

    Full text link
    We have systematically measured the shot noise in a single electron transistor (SET) as a function of bias and gate voltages. By embedding a SET in a resonance circuit we have been able to measure its shot noise at the resonance frequency 464 MHz, where the 1/f noise is negligible. We can extract the Fano factor which varies between 0.5 and 1 depending on the amount of Coulomb blockade in the SET, in very good agreement with the theory.Comment: 4 figure

    Two-dimensional arrays of low capacitance tunnel junctions: general properties, phase transitions and Hall effect

    Full text link
    We describe transport properties of two-dimensional arrays of low capacitance tunnel junctions, such as the current voltage characteristic and its dependence on external magnetic field and temperature. We discuss several experiments in which the small capacitance of the junctions plays an important role. In arrays where the junctions have a relatively large charging energy, (i.e. when they have a low capacitance) and a high normal state resistance, the low bias resistance increases with decreasing temperature and eventually at very low temperature the array becomes insulating even though the electrodes in the array are superconducting. This transition to the insulating state can be described by thermal activation. In an intermediate region where the junction resistance is of the order of the quantum resistance and the charging energy is of the order of the Josephson coupling energy, the arrays can be tuned between a superconducting and an insulating state with a magnetic field. We describe measurements of this magnetic-field-tuned superconductor insulator transition, and we show that the resistance data can be scaled over several orders of magnitude. Four arrays follow the same universal function. At the transition the transverse (Hall) resistance is found to be very small in comparison with the longitudinal resistance. However, for magnetic field values larger than the critical value.we observe a substantial Hall resistance. The Hall resistance of these arrays oscillates with the applied magnetic field. features in the magnetic field dependence of the Hall resistance can qualitatively be correlated to features in the derivative of the longitudinal resistance, similar to what is found in the quantum Hall effect.Comment: 29 pages, 16 eps figures, uses aipproc.sty and epsfig.sty, contribution to Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in Siena, Italy (8-20 september 1997
    • …
    corecore